AbstractLocal ordering in co‐deposits of water and xenon atoms produced at low temperatures can be followed uniquely by 129Xe NMR spectroscopy. In water‐rich samples deposited at 10 K and observed at 77 K, xenon NMR results show that there is a wide distribution of arrangements of water molecules around xenon atoms. This starts to order into the definite coordination for the structure I, large and small cages, when samples are annealed at ∼140 K, although the process is not complete until a temperature of 180 K is reached, as shown by powder Xray diffraction. There is evidence that Xe⋅20 H2O clusters are prominent in the early stages of crystallization. In xenon‐rich deposits at 77 K there is evidence of xenon atoms trapped in Xe⋅20 H2O clusters, which are similar to the small hydration shells or cages observed in hydrate structures, but not in the larger water clusters consisting of 24 or 28 water molecules. These observations are in agreement with results obtained on the formation of Xe hydrate on the surface of ice surfaces by using hyperpolarized Xe NMR spectroscopy. The results indicate that for the various different modes of hydrate formation, both from Xe reacting with amorphous water and with crystalline ice surfaces, versions of the small cage are important structures in the early stages of crystallization.
Read full abstract