A cell culture system previously developed by our laboratory demonstrated that T cell-tropic (CXCR4-using) but not macrophage-tropic (CCR5-using) HIV-1 strains productively infected eosinophilic cells. In the current study, an improved model was used to determine the level of this viral restriction by assessing viral entry and coreceptor usage. The model was improved by using AML14.3D10 cells that were engineered to express CCR3 in addition to the major HIV-1 coreceptors, CD4, CXCR4, and CCR5, thus making them more like primary eosinophils. A polymerase chain reaction (PCR) assay was used to detect viral entry. In the PCR assay, primers specific for early reverse transcription products were used to amplify minus strand viral DNA from HIV-1-infected AML14.3D10-CCR3 eosinophilic cells. Coreceptor blocking experiments, using the CXCR4 antagonist AMD3100, were performed to determine coreceptor usage by the CXCR4-using (X4) strain known to productively infect the cells. Virus production was measured by p24 immunoassay. As expected, viral DNA was detected in AML14.3D10-CCR3 cells infected with X4 HIV-1, and cell viability was decreased during maximal viral production. Conversely, viral DNA was not detected in eosinophilic cells exposed to a CCR5-using (R5) HIV-1 strain that is also capable of using CCR3, indicating that R5 HIV-1 is unable to enter eosinophilic cells despite the presence of the appropriate coreceptors. Infection of AML14.3D10-CCR3 cells by HTLV-IIIB was completely inhibited by AMD3100, indicating that X4 HIV-1 enters the AML14.3D10- CCR3 cell line by using the CXCR4 coreceptor exclusively. Since X4 strains predominate during the late stages of HIV-1 infection in many patients, when eosinophil numbers also tend to increase, the ability of these HIV-1 strains to infect eosinophilic cells has important implications for the involvement of eosinophils in the pathogenesis of AIDS.