The intrinsic impurity content of molybdenum and carbon was measured in the Alcator C-Mod tokamak using low resolution, multilayer mirror (MLM) spectroscopy ( Delta lambda ~1-10 AA). Molybdenum was the dominant high-Z impurity and originated from the molybdenum armour tiles covering all of the plasma facing surfaces (including the inner column, the poloidal divertor plates and the ion cyclotron resonant frequency (ICRF) limiter) at Alcator C-Mod. Despite the all metal first wall, a carbon concentration of 1 to 2% existed in the plasma and was the major low-Z impurity in Alcator C-Mod. Thus, the behaviour of intrinsic molybdenum and carbon penetrating into the main plasma and the effect on the plasma must be measured and characterized during various modes of Alcator C-Mod operation. To this end, soft X-ray extreme ultraviolet (XUV) emission lines of charge states, ranging from hydrogen-like to helium-like lines of carbon (radius/minor radius, r/a~1) at the plasma edge to potassium to chlorine-like (0.4<r/a<0.6) and magnesium- to sodium-like (r/a<0.4) lines of molybdenum in the main plasma, were measured using a novel, low resolution, photometrically calibrated polychromator with MLMs as dispersive elements. The MLM spectra were investigated in detail, and comparisons with high resolution spectroscopy were made. The utility of low resolution spectroscopy to diagnose tokamak plasmas is presented, and meaningful information about impurity behaviour was obtainable owing to the specific choice of the observed spectral regions. Ab initio physics rates from the HULLAC atomic physics package were input into the collisional radiative (CR) model and the multiple ionization state transport (MIST) code, and both MIST and the CR model were used in the interpretation of the molybdenum spectrum. The carbon spectrum was interpreted using the MIST code and the direct impact rates of Itikawa (Itakawa, Y., et al., At Data Nucl. Data Tables 33 (1985) 149), which were incorporated into the collisional radiative model. The intrinsic i