Presently, researchers are engaged in investigations with the aim of developing novel products that exhibit biodegradability and subsequent environmental friendliness. As products, biofiber-based composites are gaining popularity in various industries. Consequently, this investigation successfully identified a unique cellulosic stem fiber from Lantana camara L. (Verbenaceae) plant. As the fiber was unique, sustainable, and abundantly available throughout all seasons, it was selected for the comprehensive characterization investigation to find its potential use as a lightweight bio-based composite material substitute for synthetic fibers. Physiochemical examination revealed that the Lantana camara Verbenaceae fiber had a greater cellulose concentration (61.23±8.42 %) and density (1167±60 kg/m3), measured to be very less compared to synthetic fiber, making a perfect choice for producing lightweight composites with higher strength. The presence of cellulose Iβ and the ordered character of the crystallites were verified by Fourier transform infrared spectroscopy and X-ray diffraction method. Thermogravimetric study showed the maximum degradation temperature of 323 °C, a thermal stability of 242 °C, and a kinetic activation energy of 66.11 kJ/mol. The maximum tensile strength, strain-to-failure percent, and Young’s modulus were observed for 50-mm-length fibers. Detailed analysis of the longitudinal section of the fiber from atomic force microscopy and scanning electron microscopy study revealed that the fiber had a rough surface, which improves the bonding behavior when reinforced. The aforementioned properties showed that L. camara L. fibers are an excellent, greener alternative reinforcement for composite materials, allowing for the cleaner, more sustainable components.
Read full abstract