Pyrometallurgical processes produce slags that may contain valuable elements because of their high oxygen affinity. However, the concentration is extremely low, which causes losses. In fact, these elements, for example, tantalum and rare earth elements, are less than 1% recycled. To return such technologically important elements to the material cycle, pyrometallurgically is used to enrich them in the simplest possible compounds within the slag, which have favorable properties for recovery (morphology, crystal size, magnetic properties), allowing further mechanical separation. The purpose of modification of the slag system is to obtain engineered artificial minerals” (EnAM), a process in which targeted minerals with high element concentration are formed. In this article, this approach is investigated using tantalum-rich fayalitic slag, since this slag is commonly found in the industry for the pyrometallurgical treatment of waste electric and electronic equipment. Synthetic fayalitic slags in reducing environment under different cooling rates were produced with Ta addition. The characterization of the produced samples was carried out using powder X-ray diffraction (PXRD) and electron probe microanalysis (EPMA). Additionally, the speciation of Fe and Ta was accessible through X-ray absorption near-edge structure (XANES) spectroscopy. EPMA also provided a semiquantitative assessment of the Ta distribution in these individual compounds. In these slags, tantalum accumulated in perovskite-like oxidic and silicate compounds as well as in magnetic iron oxides. The enrichment factor is highest in tantalite/perovskite-type oxides (FexTayO6, CaxFeyTazO3) with up to 60 wt.% Ta and ‘tantalomagnetite’ (FeII(FeIII(2-5/3x)Tax)O4) with a maximum of ~30 wt.% Ta (only fast cooling). This is followed by a perovskite-like silicon containing oxide (XYO3) with 12–15 wt.% Ta (only slow cooling), and a hedenbergite-like compound (XYZ2O6) with a varying content of 0.3–7 wt.%. The Ta concentration in pure Fe, Fe(1-x)O, hercynitic spinel and hematite is negligible. Despite the very low phase fraction, the most promising EnAM compound is nevertheless perovskite-like tantalum oxide, as the highest enrichment factor was obtained. Tantalum-rich magnetite-like oxides also could be promising.
Read full abstract