To study the crosstalk between the activating transcription factor 6 (ATF6) and inositol-requiring enzyme 1 (IRE1)-X-box binding protein 1 (XBP1) pathway in oxygen-glucose deprivation/reoxygenation (OGD/R)-injured mouse hippocampal neuronal cell line HT22. The OGD/R-injured HT22 cell model was used to observe the changes of the indicators of endoplasmic reticulum stress (ERS), cell viability, and apoptosis at different OGD/R time points (0, 3, 6, 12, and 24 hours). HT22 cells in the logarithmic growth phase were randomized into blank control group, control+ATF6 activator (AA147) group, control+IRE1 inhibitor (4μ8c) group, OGD/R model group, OGD/R+AA147 group and OGD/R+4μ8c group (10 μmol/L AA147 or 16 μmol/L 4μ8c was given during the whole process in the AA147 group and 4μ8c group). Western blotting was used to detect the expression of ERS-related proteins [glucose-regulated protein 78 (GRP78), phosphorylated-inositol-requiring enzyme 1 (p-IRE1), and phosphorylated-eukaryotic translation initiation factor-2α (p-eIF2α)], and apoptosis-related proteins (Bcl-2, Bax, caspase-3, and cleaved caspase-3). The mRNA of ERS-related genes, and ATF6 [homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1 (Herpud1), protein disulfide isomerase associated 4 (Pdia4) and Sel-1 suppressor of lin-12-like (Sel1L)] and spliced XBP1 [XBP1s, include DnaJ heat shock protein family member B9 (Erdj4), Sec24 related gene family, member D (Sec24d) and signal sequence receptor, gamma (Ssr3)] induced transcriptional response-related genes were measured by real-time quantitative polymerase chain reaction (RT-qPCR). A cell counting kit-8 (CCK-8) assay was used to detect the viability of HT22 cells. Immunofluorescence was utilized to test the expression of cleaved caspase-3. Compared with the blank control group, the expression of ERS-related proteins p-IRE1 and p-eIF2α were significantly increased at 12 hours and 3 hours following OGD/R, respectively (p-IRE1/β-actin: 2.09±0.10 vs. 1.00±0.00, p-eIF2α/β-actin: 1.39±0.11 vs. 1.00±0.00, both P < 0.01). The mRNA expressions of ERS-related genes [ATF6, XBP1s, unspliced XBP1 (XBP1u), activating transcription factor 4 (ATF4), CCAAT/EBP homologous protein (CHOP)] were also upregulated in different OGD/R timepoint in HT22 cells, which indicated ERS was activated in OGD/R-stimulated HT22 cells. Compared with the OGD/R model group, the expression of protein p-IRE1 was not changed, but the mRNA of XBP1s and XBP1u were obviously downregulated in the OGD/R+AA147 group [XBP1s (2-ΔΔCt): 0.76 (0.71, 0.92) vs. 1.13 (1.03, 1.29), XBP1u (2-ΔΔCt): 0.29±0.05 vs. 0.52±0.04, both P < 0.01], whereas the expressions of XBP1s-induced transcriptional response downstream genes did not change significantly. Compared with the OGD/R model group, the protein of short-form ATF6 (sATF6) and GRP78 were not changed after administration of 4μ8c, neither was the mRNA expression of ATF6-induced transcriptional response-related genes. These results showed that the mRNA expression of XBP1s and XBP1u were inhibited by AA147-induced activation of ATF6, but no crosstalk was observed between the transcriptional response induced by ATF6 and XBP1s. Compared with the blank control group, the cell viability decreased significantly at OGD/R 3 hours [(44.64±5.12) % vs. (99.13±5.76) %, P < 0.01], the ratios of apoptosis-related proteins Bax/Bcl-2 and cleaved caspase-3/caspase-3 were significantly increased at OGD/R 3 hours and OGD 0 hour, respectively (Bax/Bcl-2: 6.15±1.65 vs. 1.00±0.00, cleaved caspase-3/caspase-3: 17.48±2.75 vs. 1.00±0.00, both P < 0.01), which indicated that apoptosis was activated in OGD/R-treated HT22 cells. Compared with the OGD/R model group, the cell viability decreased significantly [(36.52±17.78)% vs. (69.90±9.43)%, P < 0.01], and the ratios of Bax/Bcl-2 and cleaved caspase-3/caspase-3 were significantly upregulated in the OGD/R+AA147 group in HT22 cells (Bax/Bcl-2: 2.06±0.31 vs. 1.10±0.25, cleaved caspase-3/caspase-3: 3.35±0.59 vs. 0.55±0.09, both P < 0.01). Under our experimental conditions, no obvious crosstalk between the transcriptional response induced by ATF6 and XBP1s was observed, while ATF6 activation induced by AA147 suppressed mRNA expression of XBP1s and XBP1u and promoted cell death in OGD/R-treated HT22 cells.