Schramm–Loewner evolution (SLE) is a random process that gives a useful description of fractal curves. After its introduction, many works concerning the connection between SLE and conformal field theory (CFT) have been carried out. In this paper, we develop a new method of coupling SLE with a Wess–Zumino–Witten (WZW) model for [Formula: see text], an example of CFT, relying on a coset construction of Virasoro minimal models. Generalizations of SLE that correspond to WZW models were proposed by previous works [E. Bettelheim et al., Stochastic Loewner evolution for conformal field theories with Lie group symmetries, Phys. Rev. Lett. 95 (2005) 251601] and [Alekseev et al., On SLE martingales in boundary WZW models, Lett. Math. Phys. 97 (2011) 243–261], in which the parameters in the generalized SLE for [Formula: see text] were related to the level of the corresponding [Formula: see text]-WZW model. The present work unveils the mechanism of how the parameters were chosen, and gives a simpler proof of the result in these previous works, shedding light on a new perspective of SLE/WZW coupling.
Read full abstract