Error related potential (ErrP) is an effective control signal for the brain-computer interface (BCI). Current ErrP decoding methods can only distinguish right and wrong mental states. However, in real scenarios, error conditions often contain more detailed information, such as the degree of error, which would induce very similar ErrPs. Distinguishing such ErrPs effectively is of vital importance to provide more detailed information for optimizing BCIs. Hereto, a major challenge is the EEG differences of very similar ErrPs are very small. Thus, it is necessary to develop new efficient method for decoding very similar ErrPs. This study newly proposed an algorithm named shrinkage discriminant canonical pattern matching (SKDCPM), and compared its decoding results with the linear discriminant analysis (LDA), shrinkage LDA (SKLDA), stepwise LDA (SWLDA), Bayesian LDA (BLDA) and the DCPM, which were algorithms commonly used for ErrP decoding. A data set of 18 subjects was built, it had four conditions, i.e., right (0°), errors with varying degrees, i.e., 45°, 90°, 180° deviation from the predicted direction. As a result, the SKDCPM had high balanced accuracy (BACC) in right-wrong classification (0° vs. others). More importantly, it achieved a grand averaged BACC of 69.54% with the highest up to 74.25%, which outperformed all the other algorithms in very similar ErrPs decoding (45° vs. 90° vs. 180°) significantly. This study could provide new decoding methods for developing the ErrP-based BCI system.
Read full abstract