In this paper, the A\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{A} $$\\end{document}-theory, an extension of F-theory, is described as a fully U-duality covariant brane theory. This theory has some distinguishing features not known from world-sheet models. In particular, seen as a sigma model, both world-volume and target space coordinates are specific representations of the same group (the U-duality group). The U-duality group in question is an exceptional group (a split form of the Ed series). The structure of this group allows it to encompass both the T-duality group of string theory as well as the general linear symmetry group of M\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{M} $$\\end{document}-theory. A\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{A} $$\\end{document}-theory is defined by the current algebras in Hamiltonian formalism, or by world-volume actions in Lagrangian formalism. The spacetime coordinates are selfdual gauge fields on the world-volume, requiring the Gauß law constraints tying the world-volume to spacetime. Solving the Gauß law constraints/the Virasoro constraints gives the world-volume/spacetime sectioning from A\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{A} $$\\end{document}-theory to T\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{T} $$\\end{document}-theory/M\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{M} $$\\end{document}-theory respectively. The A\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{A} $$\\end{document}-theory Lagrangian admits extended symmetry which has not been observed previously in the literature, where the background fields include both the spacetime and the world-volume gravitational fields. We also constructed the four-point amplitude of A\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{A} $$\\end{document}-theory in the low energy limit. The amplitude is written in a way that the U-duality symmetry is manifest, but after solving the section condition, it reduces to the usual four-graviton amplitude.In the previous papers, we have referred to this model as F-theory, however, F-theory initiated by Vafa is now a big branch of string theory as the study of elliptic fibrations, so we refer to these constructions as generalized models of theory for all dimensions with all duality symmetries as A\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{A} $$\\end{document}-theory.
Read full abstract