Abstract

We show that planar cal N=4 Yang-Mills theory at zero 't Hooft coupling can be efficiently described in terms of 8 bosonic and 8 fermionic oscillators. We show that these oscillators can serve as world-sheet variables, the string bits, of a discretized string. There is a one to one correspondence between the on shell gauge invariant words of the free Y-M theory and the states in the oscillators' Hilbert space, obeying a local gauge and cyclicity constraints. The planar two-point functions and the three-point functions of all gauge invariant words are obtained by the simple delta-function overlap of the corresponding discrete string world sheet. At first order in the 't Hooft coupling, i.e. at one-loop in the Y-M theory, the logarithmic corrections of the planar two-point and the three-point functions can be incorporated by nearest neighbour interactions among the discretized string bits. In the SU(2) sub-sector we show that the one-loop corrections to the structure constants can be uniquely determined by the symmetries of the bit picture. For the SU(2) sub-sector we construct a gauged, linear, discrete world-sheet model for the oscillators, with only nearest neighbour couplings, which reproduces the anomalous dimension Hamiltonian up to two loops. This model also obeys BMN scaling to all loops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.