Rice trade is one of the food resistance components in terms of its availability. The comprehensive integration between international commodity rice prices and domestic prices encourage the prediction of world rice prices, using the Thai rice price as the world's reference price. In this study, the wavelet neuro-fuzzy system which combines the wavelet transform and the neuro-fuzzy technique has been applied to monthly predict the world rice price. The observed monthly rice price data are decomposed into some sub-series components by maximal overlap discrete wavelet transform (MODWT), and then the appropriate sub-series that have higher correlation to the real data are used as inputs of the neuro-fuzzy model for monthly predicting world rice prices for six months in advance. The neuro-fuzzy model is begun with determining the membership value of each data using Fuzzy C-Means, followed by fuzzy inference procedure of the Sugeno zero-order model. Obtained results showed that the WNFS method can be used to predict the world rice price, with the error value resulted from learning process of MSE 20,69097 and MAPE 0,65584%. While the error measurement results for the six months in advance prediction shows the acquisition of MSE 3610,14847 and MAPE 13,62334%. Keywords : Prediction of Monthly World Rice Price, Maximal Overlap Discrete Wavelet Transform, Neuro-fuzzy System.
Read full abstract