Sperm-borne microRNAs play a pivotal role in influencing essential cellular processes during fertilization, impacting the quality of embryo development. Dysregulated microRNA profiles have been associated with compromised embryonic development and increased incidences of pregnancy loss. This study aimed to investigate the potential associations between the abundance of miR-34c-5p and miR-191-3p in human spermatozoa with sperm quality, as well as with embryo quality and metabolic performance during in vitro development. Thirteen couples who underwent a total of 13 cycles participated in this study. The sperm quality was assessed using conventional methods following World Health Organization guidelines. Quantitative polymerase chain reaction was employed to measure microRNA abundance in spermatozoa. Embryos were categorized as good, lagging, or bad based on morphokinetic evaluation. Evaluation of embryo metabolic performance involved tracking changes in specific metabolites within the cultured media using nuclear magnetic resonance spectroscopy. Statistical analysis was conducted to explore the correlation between microRNA abundance in human spermatozoa and all other collected data. Our findings revealed a negative correlation between the abundance of miR-34c-5p (but not miR-191-3p) and total sperm motility, potentially mediated by the modulation of key signaling pathways. Additionally, higher levels of miR-34c-5p in spermatozoa were strongly associated with the consumption or release of key metabolites by developing embryos, particularly those linked with lipid and glucose metabolism, suggesting enhanced metabolic performance, while miR-191-3p was mostly associated with glucose consumption. Concurrently, only miR-34c-5p content in spermatozoa correlated with higher embryo quality. This study provides evidence suggesting that the abundance of miR-34c-5p in spermatozoa is correlated not only with total sperm motility but also with markers of embryo developmental competence, highlighting the potential significance of this sperm microRNA content as a biomarker in assisted reproduction.
Read full abstract