Abstract MXene, a new advanced two-dimensional material, has attracted great attention in energy storage, transparent electrodes, and electromagnetic shielding due to its high conductivity, high specific surface area, and hydrophilic surface. Given the solution-processability and tunable work function, MXene also holds great potential for wide-range photodetection and integrated optics. Here, we demonstrate a waveguide integrated Schottky photodetector based on Ti3C2T x /Si van der Waals heterojunction. Specifically, the barrier of the Schottky photodetector can be adjusted by using simple surface treatment. The work function of the Ti3C2T x is reduced from 4.66 to 4.43 eV after vacuum annealing, and the barrier height of Ti3C2T x /p-Si Schottky junction is correspondingly increased from 0.64 to 0.72 eV, leading to 215 nm working wavelength blue-shift. The photodetector exhibits working wavelength tunability in short-wavelength infrared regions due to the engineered Schottky barrier. To our best knowledge, this is the first demonstration of utilizing MXene in waveguide-integrated photodetection, showing the potential applications for various scenarios thanks to the flexible working wavelength range induced by the tunable barrier.
Read full abstract