Photoaffinity labeling (PAL) methodologies have proven to be instrumental for the unbiased deconvolution of protein-ligand binding events in physiologically relevant systems. However, like other chemical proteomic workflows, they are limited in many ways by time-intensive sample manipulations and data acquisition techniques. Here, we describe an approach to address this challenge through the innovation of a carboxylate bead-based protein cleanup procedure to remove excess small-molecule contaminants and couple it to plate-based, proteomic sample processing as a semiautomated solution. The analysis of samples via label-free, data-independent acquisition (DIA) techniques led to significant improvements on a workflow time per sample basis over current standard practices. Experiments utilizing three established PAL ligands with known targets, (+)-JQ-1, lenalidomide, and dasatinib, demonstrated the utility of having the flexibility to design experiments with a myriad of variables. Data revealed that this workflow can enable the confident identification and rank ordering of known and putative targets with outstanding protein signal-to-background enrichment sensitivity. This unified end-to-end throughput strategy for processing and analyzing these complex samples could greatly facilitate efficient drug discovery efforts and open up new opportunities in the chemical proteomics field.
Read full abstract