The goal was to investigate the relationship between the insertion angle/cochlear coverage of cochlear implant electrode arrays and post-operative speech recognition scores in a large cohort of patients implanted with lateral wall electrode arrays. Pre- and post-operative cone beam computed tomography scans of 154 ears implanted with lateral wall electrode arrays were evaluated. Traces of lateral wall and electrode arrays were combined into a virtual reconstruction of the implanted cochlea. This reconstruction was used to measure insertion angles and proportional cochlear coverage. Word recognition scores and sentence recognition scores measured 12 months after implantation using electric-only stimulation were used to examine the relationship between cochlear coverage/insertion angle and implantation outcomes. Post-operative word recognition scores and the difference between post- and pre-operative word recognition scores were positively correlated with both cochlear coverage and insertion angle, however sentence recognition scores were not. A group-wise comparison of word recognition scores revealed that patients with cochlear coverage below 70% performed significantly worse than patients with coverage between 79%-82% (p = 0.003). Performance of patients with coverage above 82% was on average poorer than between 79%-82, although this finding was not statistically significant (p = 0.84). Dividing the cohort into groups based on insertion angle quadrants revealed that word recognition scores were highest above 450° insertion angle, sentence recognition scores were highest between 450° and 630° and the difference between pre- and post-operative word recognition scores was largest between 540° and 630°, however none of these differences reached statistical significance. The results of this study show that cochlear coverage has an effect on post-operative word recognition abilities and the benefit patients receive from their implant. Generally, higher coverage led to better outcomes, however there were results indicating that insertion past 82% cochlear coverage may not provide an additional benefit for word recognition. These findings can be useful for choosing the optimal electrode array and thereby improving cochlear implantation outcomes on a patient-individual basis.
Read full abstract