The aim of this paper is to give a wide introduction to approximation concepts in the theory of stochastic differential equations. The paper is principally concerned with Zong-Zakai approximations. Our aim is to fill a gap in the literature caused by the complete lack of monographs on such approximation methods for stochastic differential equations; this will be the objective of the author's forthcoming book. First, we briefly review the currently-known approximation results for finite- and infinite-dimensional equations. Then the author's results are preceded by the introduction of two new forms of correction terms in infinite dimensions appearing in the Wong-Zakai approximations. Finally, these results are divided into four parts: for stochastic delay equations, for semilinear and nonlinear stochastic equations in abstract spaces, and for the Navier-Stokes equations. We emphasize in this paper results rather than proofs. Some applications are indicated.
Read full abstract