This study explores the transformative potential of digital, theory-driven, and Bayesian paradigms in neuropsychology by combining digital technologies, a commitment to evaluating theoretical frameworks, and Bayesian statistics. The study also examines theories of executive function and cognitive flexibility in a large sample of neurotypical individuals (N = 489). We developed an internet-based Wisconsin Card-Sorting Task (iWCST) optimized for online assessment of perseveration errors (PE). Predictions of the percentage of PE, PE (%), in non-repetitive versus repetitive situations were derived from the established supervisory attention system (SAS) theory, non-repetitive PE (%) < repetitive PE (%), and the novel goal-directed instrumental control (GIC) theory, non-repetitive PE (%) > repetitive PE (%). Bayesian t-tests revealed the presence of a robust error suppression effect (ESE) indicating that PE are less likely in repetitive situations than in non-repetitive situations, contradicting SAS theory with posterior model probability p < 0.001 and confirming GIC theory with posterior model probability p > 0.999. We conclude that repetitive situations support cognitive set switching in the iWCST by facilitating the retrieval of goal-directed, instrumental memory that associates stimulus features, actions, and outcomes, thereby generating the ESE in neurotypical individuals. We also report exploratory data analyses, including a Bayesian network analysis of relationships between iWCST measures. Overall, this study serves as a paradigmatic model for combining digital technologies, theory-driven research, and Bayesian statistics in neuropsychology. It also provides insight into how this integrative, innovative approach can advance the understanding of executive function and cognitive flexibility and inform future research and clinical applications.
Read full abstract