Passive wireless surface acoustic wave (SAW) sensors are very useful for on-site monitoring of the working status of machines in complex environments, such as high-temperature rotating objects. For rotating parts, it is difficult to realize real-time and continuous monitoring because of the unstable sensing signal caused by the continuous change of the relative position of the rotating part to the sensor and shielding of the signal. In our SAW sensing system, we propose a loop antenna integrated with the rotating part to obtain a stable sensing signal owing to its omnidirectional radiation pattern. Methodologies for determining the antenna dimension, system operating frequency, and procedures for designing a SAW sensor tag are discussed in this paper. By fully utilizing the influence of metal rotor on antenna performance, the antenna needs no impedance matching elements while it provides sufficient gain, which equips the antenna with nearly zero temperature drift at a wide temperature-sensing range. Experimental verification results show that this sensing system can greatly improve the stability of the sensing signal significantly and can achieve a temperature sensing accuracy of ~1 °C at different rotational speeds, demonstrated by the feasibility of the loop antenna for monitoring the working status of rotating metal parts.