Results are presented from experimental studies of the anode plasma dynamics and measurements of the ion flux ejected along the axis of a high-current Z-pinch. Pinch discharges were formed by the implosion of tungsten wire arrays in the Angara-5-1 facility. It is shown that the ion energy spectrum depends on the mass and configuration of wire arrays, as well as on the diameter of the anode aperture. The shape of the ion spectrum indicates that the plasma propagates in the form of a compact plasmoid. Shadow and X-ray images of the plasma show that the axial velocity of the plasma outflowing through the anode aperture is comparable with the velocity of radial plasma compression and, for tungsten ions, can reach a value corresponding to an energy of 100 keV. The experimental data indicate that the ion energy spectrum mainly forms due to the electrodynamical acceleration of the plasma and cumulative jets. A possible mechanism for the production of compact plasma formations in the course of electrodynamic plasma acceleration is discussed.
Read full abstract