Microplastic (MP; plastic particles < 5 mm) pollution is pervasive in the marine environment, including remote polar environments. This study provides the first pan-Antarctic survey of MP pollution in Southern Ocean sea ice by analyzing sea ice cores from several diverse Antarctic regions. Abundance, chemical composition, and particle size data were obtained from 19 archived ice core samples. The cores were melted, filtered, and chemically analyzed using Fourier-transform infrared spectroscopy and 4,090 MP particles were identified. Nineteen polymer types were found across all samples, with an average concentration of 44.8 (± 50.9) particles·L-1. Abundance and composition varied with ice type and geographical location. Pack ice exhibited significantly higher particle concentrations than landfast ice, suggesting open ocean sources of pollution. Winter sea ice cores had significantly more MPs than spring and summer-drilled cores, suggesting ice formation processes play a role in particle incorporation. Smaller particles dominated across samples. Polyethylene (PE) and polypropylene (PP) were the most common polymers, mirroring those most identified across marine habitats. Higher average MP concentrations in developing sea ice during autumn and winter, contrasting lower levels observed in spring and summer, suggest turbulent conditions and faster growth rates are likely responsible for the increased incorporation of particles. Southern Ocean MP contamination likely stems from both local and distant sources. However, the circulation of deep waters and long-range transport likely contribute to the accumulation of MPs in regional gyres, coastlines, and their eventual incorporation into sea ice. Additionally, seasonal sea ice variations likely influence regional polymer compositions, reflecting the MP composition of the underlying waters.
Read full abstract