The present work focuses on nonlinear dynamics models of multi-walled carbon nanotubes with initial curvature resting on Winkler-Pasternak elastic foundations in a nonlinear thermomagnetic environment using nonlocal elasticity theory. The derived systems of nonlinear vibration models are solved with the aid of the Galerkin decomposition and the homotopy perturbation method. Effects of temperature, magnetic field, multi-layer, and other thermomechanical parameters on the dynamic responses of the slightly curved multi-walled carbon nanotubes are investigated and discussed. As the temperature increases, the frequency ratio decreases as the linear natural frequency of the system increases. The results reveal that the frequency ratios decrease as the number of nanotube walls, temperature, spring constants, magnetic field strength, and the ratio of the radius of curvature to the length of the slightly curved nanotubes increase. These trends are the same for all the boundary conditions considered. However, clamped-simple and clamped-clamped supported multi-walled nanotube have the highest and lowest frequency ratio, respectively. Also, from the parametric studies to control nonlinear vibration of the carbon nanotubes, it is shown that quadruple-walled carbon nanotubes can be taken as pure linear vibration even at any value of linear Winkler and Pasternak constants. Therefore, this can be used for the restraining of the chaos vibration in the objective structure. These research findings will assist the designers and manufacturers in developing multi-walled carbon nanotubes for various structural, electrical, mechanical, and biological applications, especially in the areas of designing nanoelectronics, nanodevices, nanomechanical systems, nanobiological devices, and nanocomposites, and particularly when they are subjected to thermal loads, magnetic fields and elastic foundations.
Read full abstract