This paper proposes a signal processing approach for wind turbine gearbox vibration signals based on employing multiple analysis pipelines. These so-called pipelines consist of combinations of various advanced signal processing methods that have been proven to be effective in literature when applied to wind turbine vibration signals. The performance of the pipelines is examined on vibration data containing different wind turbine gearbox faults in the planetary stages. Condition indicators are extracted from every pipeline to evaluate the fault detection capability for such incipient failures. The results indicate that the multipronged approach with the different pipelines increases the reliability of successfully detecting incipient planetary stage gearbox faults. The type, location, and severity of the fault influences the choice for the appropriate processing method combination. It is therefore often insufficient to only utilize a single processing pipeline for vibration analysis of wind turbine gearbox faults. Besides investigating the performance of the different processing techniques, the main outcome and recommendation of this paper is thus to employ a diversified analysis methodology which is not limited to a sole method combination, to improve the early detection rate of planetary stage gearbox faults.