Heavy-duty vehicle (HDV) platooning, facilitated by vehicle-to-vehicle communication, plays a crucial role in transforming logistics and transportation. It reduces fuel consumption and emissions while enhancing road safety, supporting sustainable freight strategies and the integration of autonomous vehicles. This study employs a hybrid approach combining wind tunnel experiments and Computational Fluid Dynamics (CFD) simulations to analyze HDV platoon aerodynamics. The approach has two sequential phases: single-HDV simulation validation and multi-HDV platooning simulation. In the first phase, a single HDV CFD simulation is validated against NASA’s benchmarks, with optimized mesh generation, proper models, and conditions, and errors minimized below 1%. In the second phase, the validated model is used for multi-HDV platooning simulations, maintaining consistent mesh structures, physical models, and boundary conditions. Various platoon configurations are explored to assess the effects of speed, inter-vehicle spacing, and platoon size and position on aerodynamic drag, with virtual wind tunnel simulations evaluating drag coefficients. Our findings reveal that inter-vehicle spacing critically influences drag. An optimal range of 0.25 to 0.5-times the HDV length is identified to achieve an effective balance between safety and fuel efficiency, reducing platoon aerodynamic drag by 13–44% compared to single HDVs. While platoon speed is generally limited to impacting drag, it becomes more pronounced when an HDV platoon has very small inter-vehicle spacings, or in platoons exceeding five HDVs. Moreover, as the platoon size increases, the overall aerodynamic drag coefficient diminishes, particularly benefiting the rear HDV in larger platoons with smaller inter-vehicle spacing. These insights offer a comprehensive understanding of HDV platoon aerodynamics, enabling logistics enterprises to optimize platoon configurations for fuel savings, improved traffic flow, larger platoon formation, and enhanced transportation safety.
Read full abstract