AbstractIn response to growing reliance on electricity and gas systems, this paper introduces a stochastic bi‐level model for the optimized integration of these systems. This integration is achieved through sizing and allocating of power‐to‐gas (P2G) and gas‐to‐power (G2P) units. The first level of the model focuses on decisions related to P2G and G2P unit installations, while the second level addresses optimal system operation considering decisions made from first level and stochastic scenarios. The primary aim is to enhance energy‐sharing capabilities through coupling devices and mitigate wind generation curtailment. An economic evaluation assesses the model's effectiveness in reducing costs. N − 1 contingency analysis gauges the integrated system's ability to supply load under emergency conditions. Two new indices, performance of the electricity system and performance of the natural gas system, are proposed for N − 1 contingency analysis. These indices quantify the proportion of the supplied load to the total load, thereby illustrating the system's capacity to meet demand. For numerical investigation, the proposed model is applied to a modified IEEE 14‐bus power system and a 10‐node natural gas system. Numerical results demonstrate a 9.426% reduction in investment costs and a significant 10.6% reduction in wind curtailment costs through proposed planning model.
Read full abstract