Soil salinity has emerged as a critical abiotic stress in potato production, whereas wilt disease, caused by Fusarium solani, is the significant biotic stress. An experiment was performed to decipher the occurrence of wilt incidence by F. solani FJ1 under the influence of salinity in both in vitroand pot culture conditions. High salt concentration negatively influenced root and shoot development in the variety “Kufri Jyoti” but positively affected the mycelial growth and sporulation behaviours of F. solani FJ1. There was abundant whitish mycelial growth with enhanced biomass and high sporulation (microconidia production) in F. solani FJ1 cultured on salt-supplemented media. Moreover, under high salinity conditions (EC 2–8 dS m−1), severe wilting and rotting of vascular bundles were observed in plants artificially inoculated with F. solani FJ1. The mortality rate of potato plants was significantly higher under individual and combined stresses as compared to control. The wilt index of individual and combined stressed plants was also substantially higher compared to the control. Additionally, compared to the control, there was a significant decrease in total chlorophyll content and membrane stability index of the leaves under combined stress. However, the total phenols were increased under stress conditions. The total sugar content of potato plants decreased in infected plants, but increased when exposed to salt stress or a combination of salt stress and pathogen infection. F. solani infection also increased the activity of peroxidase (POX) and decreased the activity of phenylalanine ammonia-lyase (PAL) and catalase (CAT). These results suggest that Fusarium wilt and dry rot will be a more severe disease for potato cultivation in saline soils.