The multi-flavor $BF$ theories in (3+1) dimensions with cubic or quartic coupling are the simplest topological quantum field theories that can describe fractional braiding statistics between loop-like topological excitations (three-loop or four-loop braiding statistics). In this paper, by canonically quantizing these theories, we study the algebra of Wilson loop and Wilson surface operators, and multiplets of ground states on three torus. In particular, by quantizing these coupled $BF$ theories on the three-torus, we explicitly calculate the $\mathcal{S}$- and $\mathcal{T}$-matrices, which encode fractional braiding statistics and topological spin of loop-like excitations, respectively. In the coupled $BF$ theories with cubic and quartic coupling, the Hopf link and Borromean ring of loop excitations, together with point-like excitations, form composite particles.
Read full abstract