To establish a short rotation coppice (SRC) system in the temperate region of East Asia, planting was conducted for cuttings from seven species, including Salix eriocarpa, S. gilgiana, S. gracilistyla, S. integra, S. sachalinensis, S. serissaefolia, and S. subfragilis, with wide distribution in eastern Japan. During cultivation, cheap compost derived from swine manure and containing high concentrations of various nutrients was added. Three treatment groups, including control, low manure (5 Mg ha−1), and high manure (10 Mg ha−1) treatments, were established, and seven willows were grown for two complete growing seasons to obtain the clone density of 10,000 cuttings ha−1. The manure treatments accelerated the growth of all the willow species after two growing seasons. The averages of annual biomass production of seven willows grown under the control, low manure, and high manure treatments were 0.2 Mg ha−1yr−1, 5.3 Mg ha−1yr−1, and 8.5 Mg ha−1yr−1, respectively. By comparing with the biomasses of seven willows, the largest annual biomass production rates of 14.1 and 13.7 Mg ha−1yr−1 were observed in the high manure treatments of S. sachalinensis and S. subfragilis, respectively. For two species under the high manure treatment, S. sachalinensis had the thickest shoots, and S. subfragilis had the tallest shoots. These growth characteristics of S. sachalinensis and S. subfragilis originate from their high biomass production. Overall, these results suggest that S. sachalinensis and S. subfragilis are potentially feasible candidates for the SRC system in temperate regions of East Asia.