Ca 2+/calmodulin-dependent protein kinase II (CaM kinase II) is one of the most abundant protein kinases in the brain and has a broad substrate specificity [M.K. Bennett, N.E. Erondu, M.B. Kennedy, Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain, J. Biol. Chem. 258 (1983) 12735–12744 [1]; J.R. Goldenring, B. Gonzalez, J.S. McGuire, Jr., R.J. DeLorenzo, Purification and characterization of a calmodulin-dependent kinase from rat brain cytosol able to phosphorylate tubulin and microtubule-associated proteins, J. Biol.Chem. 258 (1983) 12632–12640 [4]; M.B. Kennedy, P. Greengard, Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate protein I at distinct sites, Proc. Natl. Acad. Sci. U.S.A. 78 (1981) 1293–1297 [10]; T. Yamauchi, H. Fujisawa, Evidence for three distinct forms of calmodulin-dependent protein kinases from rat brain, FEBS Lett. 116 (1980) 141–144 [20]; T. Yamauchi, H. Fujisawa, Purification and characterization of the brain calmodulin-dependent protein kinase (kinase II), which is involved in the activation of tryptophan 5-monooxygenase, Eur. J. Biochem. 132 (1983) 15–21 [21]]. The α and β isoforms of CaM kinase II are known to be expressed almost exclusively in the brain [P.I. Hanson, H. Schulman, Ca 2+/calmodulin-dependent protein kinases, Annu. Rev. Biochem. 61 (1992) 559–601 [7]]. To elucidate the cellular function of CaM kinase II, we introduced cDNA of wild-type CaM kinase II α- or β-isoform, and of mutant α-isoform (Ala-286 kinase) into two different types of neuroblastoma, Neuro2a (Nb2a) and NG108-15, thus generating cell lines stably producing elevated levels of these kinases. The mutant α-isoform is markedly suppressed in its autophosphorylation by replacement of Thr-286 with Ala [Y.-L. Fong, W.L. Taylor, A.R. Means, T.R. Soderling, Studies of the regulatory mechanism of Ca 2+/calmodulin-dependent protein kinase II. Mutation of threonine 286 to alanine and aspartate, J. Biol. Chem. 264 (1989) 16759–16763 [3]; P.I. Hanson, M.S. Kapiloff, L.L. Lou, M.G. Rosenfeld, H. Schulman, Expression of a multifunctional Ca 2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation, Neuron 3 (1989) 59–70 [6]; S. Ohsako, H. Nakazawa, S. Sekihara, A. Ikai, T. Yamauchi, Role of Threonine-286 as autophosphorylation site for appearance of Ca 2+-independent activity of calmodulin-dependent protein kinase II α subunit, J. Biochem. 109 (1991) 137–143 [15]]. We provided evidence that CaM kinase II played a role in regulating neurite outgrowth and growth cone motility in these cells, and that the autophosphorylation is essential for the kinase to sufficiently exert its cellular function in vivo [Y. Goshima, S. Ohsako, T. Yamauchi, Overexpression of Ca 2+/calmodulin-dependent protein kinase II in Neuro2a and NG108-15 neuroblastoma cell lines promotes neurite outgrowth and growth cone motility, J. Neurosci. 13 (1993) 559–567 [5]]. Neurite outgrowth was further stimulated by treatment with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) or chelerythrine, inhibitors of protein kinase C [T. Nomura, K. Kumatoriya, Y. Yoshimura, T. Yamauchi, Overexpression of α and β isoforms of Ca 2+/calmodulin-dependent protein kinase II in neuroblastoma cells—H-7 promotes neurite outgrowth, Brain Res. 766 (1997) 129–141 [14]]. The morphological change stimulated with protein kinase inhibitors was rapid and was greater in the β than α cells. Some substrates of CaM kinase II related to neurite outgrowth were detected in cells overexpressing the kinase stimulated with H-7. These results suggest that CaM kinase II and protein kinase C play an important role in the control of cell change. Themes: Development and regeneration Topics: Process outgrowth, growth cones, and sprouting
Read full abstract