Changes in the concentration of the three most abundant glucosinolates were measured in the leaves of perennial wall rocket [Diplotaxis tenuifolia (L.) DC.], and annual garden rocket (Eruca sativa Mill.). HPLC-MS was used to identify glucoraphanin, 4-hydroxyglucobrassin and glucoerucin from perennial wall rocket, and glucoraphanin, glucobrassicin and 4-methoxyglucobrassicin from annual garden rocket. In separate experiments the responses of glucosinolates to harvest number, seasonal conditions, nitrogen supply and post-harvest storage conditions were measured. For perennial wall rocket, season influenced the concentration of glucoraphanin, which were highest for the spring [379 µg kg(-1) fresh weight (FW)] and summer (317 µg kg(-1) FW) plantings. The concentration of 4-hydroxyglucobrassin was higher in the leaves of first harvest crops. This response was due to this glucosinolate not being detected in the leaves of second harvest crops. Thus, the parent glucosinolate was altered between the first and second harvests in response to the abiotic stresses caused by harvesting. For annual garden rocket, there was an interaction between the harvest number and season for all glucosinolates measured. However, no clear response was observed between these factors. Higher concentrations of glucobrassicin and 4-methoxyglucobrassicin were measured for first harvest leaves when compared to the second harvest. This was due to the absence of detection of these glucosinolates in the leaves of second harvested plants; consequently higher total glucosinolate concentrations were measured for the first harvest winter (1224 µg kg(-1) FW) and summer (864 µg kg(-1) FW) crops. The concentrations of individual glucosinolates vary greatly over typical pre- and post-harvest commercial conditions. The absence of 4-hydroxyglucobrassin for perennial wall rocket, and glucobrassicin and 4-methoxyglucobrassicin for annual garden rocket between harvests, illustrates that abiotic stress from harvesting has the capacity to alter the types of glucosinolates in leaves. Concentrations do not generally decline during a typical storage period, indicating that the potential benefits of these compounds are not lost during post-harvest storage.
Read full abstract