Coastal aquaculture and local fisheries interact in shared marine environments, influencing each other synergistically and/or antagonistically. Salmon farming, notably with open-net sea cages along the Norwegian coast, attracts wild fish due to increased food availability from uneaten feed, but it also exposes wild fish to farm emissions like waste and toxic chemicals (de-lice treatments, antifouling and medical agents). The attraction behaviour of wild fish can impact fatty acid composition in fish tissues, influenced by the high terrestrial fat content in salmon aquafeed. We study how the Atlantic cod, aggregating around salmon farms in a subarctic fjord in Northern Norway, can be affected, potentially altering their natural diet and fatty acid profiles. Our study compares the muscle-tissue fatty acid compositions of cod caught near aquaculture facilities (impact) versus fish caught in neighbouring fjords (control), and we hypothesise decreased omega-3 fatty acids near farms. The analysis revealed no significant differences in the fatty acid concentrations or categories between the impacted and control fish, challenging our initial expectations. However, differences were found for C18:1(n9)t (elaidic acid), with a higher value in the impacted fish. These findings suggest that salmon farming’s influence on cod’s fatty acid profiles in the flesh (i.e., relevant for the nutritional quality of the fillets that consumers eat) may be limited or minimal despite their aggregative behaviours around farms. The threshold levels of salmon feed consumed by wild cod before it affects the quality and survival of, e.g., sperm or other life stages, are not known and require new investigations. This study underscores the complexity of interactions between aquaculture and wild fisheries, impacting both ecological dynamics and consumer perspectives on seafood quality and health benefits.