The large-scale stream structure of the solar wind flow is studied in the main acceleration zone from 10 to 40 solar radii from the Sun. Three independent sets of experimental data were used: radio astronomical observations of radio wave scattering using the large radio telescopes of the Lebedev Physical Institute; dual-frequency Doppler solar wind speed measurements from the Ulysses Solar Corona Experiment during the spacecraft's two solar conjunctions in summer 1991 and winter 1995; solar magnetic field strength and configuration computed from Wilcox Solar Observatory data. Both the experimental data on the position of the transonic region of the solar wind flow and the solar wind speed estimates were used as parameters reflecting the intensity of the solar wind acceleration process. Correlation studies of these data with the magnetic field strength in the solar corona revealed several types of solar wind flow differing in their velocities and the location of their primary acceleration region.
Read full abstract