An electronic implementation of a novel Wien bridge oscillation with antiparallel diodes is proposed in this paper. As a result, we show by using classical nonlinear dynamic tools like bifurcation diagrams, Lyapunov exponent plots, phase portraits, power density spectra graphs, time series, and basin of attraction that the oscillator transition to chaos is operated by intermittency and interior crisis. Some interesting behaviors are found, namely, multistability, hyperchaos, transient chaos, and bursting oscillations. In comparison with some memristor-based oscillators, the plethora of dynamics found in this circuit with current-voltage (i–v) characteristic of diodes mounted in the antiparallel direction represents a major advance in the knowledge of the behavior of this circuit. A suitable microcontroller based design is built to support the numerical findings as these experimental results are in good agreement.