Efficient and accurate detection of the temporal dynamics and spatial variations of leaf dry matter content would help monitor key properties and processes in vegetation and the wider ecosystem. However, leaf water content strongly absorbs at shortwave infrared wavelengths, reducing the signal from dry matter. The major objective of this study was to examine relationship between spectral reflectance of fresh leaves and the ratio of leaf dry mass to leaf area, across a wide range of species at the leaf scale. A narrow-band, normalized index combining two distinct wavebands centred at 1649 and 1722 nm achieved the highest overall performance and discriminatory power compared to either single band or first derivatives. The normalized index was evaluated using the PROSPECT (leaf optical properties spectra) simulated reflectance spectra and field measurements from the Leaf Optical Properties Experiment (LOPEX) data set. Both evaluations show that leaf dry matter contents were retrievable with R 2 of 0.845 and 0.681 and regression slopes of 0.903 and 0.886. This study suggests that spectral reflectance measurements hold promise for the assessment of dry matter content for green leaves. Further investigation needs to be conducted to evaluate the effectiveness of this normalized index at canopy scales.