Compound strategies of equalization and space diversity in the form of an optimum baseband combiner are attractive for wideband time division multiple access (TDMA) portable communication radio links in order to combat dispersive fading and cochannel interference. The authors investigate the performance of such a scheme in conjunction with convolutional coding and soft-decision Viterbi decoding via a semianalytical technique based on the method of moments. Such an approach avoids a Gaussian characterization of interference and yields results for both ideal interleaving and no interleaving. With dual space diversity, three taps per forward filter, and a data rate of 10 Mb/s, it is shown that, although a third space diversity branch remains preferable in terms of performance, channel coding can be a viable alternative, particularly in terms of outage rate, to increasing the space diversity order, even in the absence of interleaving, provided the signal-to-interference ratio is sufficiently high. >
Read full abstract