We study the magnetic-field-induced dichroism on a sample of gallium neutral atoms created in a hollow cathode lamp and describe a method for robust stabilization of violet-blue diode lasers tuned on gallium atomic transitions for an atom nanofabrication experiment. We compare the experimental dichroic signals with theoretical simulations obtained by the solving of the exact atom-field interaction Hamiltonian. We find excellent agreement when considering the magnetic field shielding from the hollow cathode. This method allows for a wide range of frequency tuning, modulation-free locking, and long-term stability of external-cavity diode lasers. From analysis of a square root Allan variance we have achieved a stability of 1 MHz at 1-s average time.
Read full abstract