This study investigates a novel method to control hypersonic boundary layer transition using a combined local cooling and local metasurface treatment. The method’s effectiveness was investigated on a 5-degree half-angle blunt wedge with a nose radius of 0.0254 mm at a freestream Mach number of 6.0 using direct numerical simulations and linear stability theory. We explored four cases: (i) adiabatic baseline case, (ii) locally cooled case, (iii) local metasurface case, and (iv) combined local cooling-local metasurface case. Results showed that the combined local cooling-local metasurface treatment significantly reduced both wall pressure disturbance amplitude and the density perturbation amplitude around the sonic line, indicating a potential for controlling hypersonic boundary layer transition. In the local cooling-local metasurface case, the disturbance amplitude at the end of the computational domain was 270 times lower than the baseline case. The study also examined the impact of Reynolds numbers, ranging from 25.59 million per meter to 32.80 million per meter. Unsteady simulations revealed that the Reynolds number had a negligible effect on the local cooling-local metasurface performance, indicating that the proposed method applies to a wide range of flight conditions.
Read full abstract