Abstract

Incorporating recuperators into gas turbines shows considerable potential for lower emissions and fuel consumption. Nowadays the technology readiness of advanced compact heat exchanger has provided a solid foundation for the availability of lightweight, higher efficient recuperators which would find good acceptance on the rotorcraft without penalizing the operational capabilities. To understand the impact of recuperator on the whole system for further development of future recuperated helicopter, it is proposed to evaluate the potential of recuperated helicopter turboshaft engines with emphasis placed on highly effective primary surface recuperator. This paper presents a comprehensive multidisciplinary simulation framework, and the aircraft configuration selected is a generic helicopter, which is similar to the helicopter Bo105, equipped with two Allison 250-C20B turboshaft engine variants. The improved part-load performance against the reference non-recuperated cycle is discussed first, followed by the analysis and evaluation of two representative flight missions. The study is finally extended to quantify the flight time required to compensate for the additional recuperator weight under the flight condition of 0-250 km/h and 0-3000 m for different recuperator design effectiveness values. It is suggested that the selection of recuperator effectiveness should be dependent on the most commonly involved mission profile and flight duration, in order to offset the added parasitic weight of the recuperator. The established rotorcraft multidisciplinary framework proves to be an effective tool to conduct a comprehensive assessment for the recuperated helicopter under a wide range of flight conditions as well as at mission level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.