Controlling crystal growth alignment in low-dimensional perovskites (LDPs) for solar cells has been a persistent challenge, especially for low-n LDPs (n < 3, n is the number of octahedral sheets) with wide band gaps (>1.7 eV) impeding charge flow. Here we overcome such transport limits by inducing vertical crystal growth through the addition of chlorine to the precursor solution. In contrast to 3D halide perovskites (APbX3), we find that Cl substitutes I in the equatorial position of the unit cell, inducing a vertical strain in the perovskite octahedra, and is critical for initiating vertical growth. Atomistic modelling demonstrates the thermodynamic stability and miscibility of Cl/I structures indicating the preferential arrangement for Cl-incorporation at I-sites. Vertical alignment persists at the solar cell level, giving rise to a record 9.4% power conversion efficiency with a 1.4 V open circuit voltage, the highest reported for a 2 eV wide band gap device. This study demonstrates an atomic-level understanding of crystal tunability in low-n LDPs and unlocks new device possibilities for smart solar facades and indoor energy generation.