White spot disease, caused by white spot syndrome virus (WSSV), has historically been the most devastating disease in shrimp aquaculture industry across the world. The mode of virus transmission is the most crucial stage in the dynamics and management of virus infection. This study explored the mechanism of vertical transmission of WSSV in Indian white shrimp, Penaeus indicus, potential native species for domestication and genetic improvement, using quantitative real time PCR (q RT PCR), light and electron microscopy, and in situ hybridization. Wild brooders of P. indicus (n = 2576) were sampled along the South east coast of India, during 2016 to 2021. Of these ∼ 58 % of the brooders were positive for WSSV, and almost 50 % of infected wild brooders were at the various stages of reproductive maturation. WSSV-PCR positive brooders (n = 200) were analysed for vertical WSSV transmission. The q RT PCR studies of reproductive tissues revealed that 61 % (n = 13) of spermatophore, 54 % (n = 28) of immature ovaries and 48 % (n = 27) of ripe ovaries were infected with WSSV. The lowest level of infection was recorded in females with ripe ovaries (6.84 × 101 ± 9.79 × 100 ng genomic DNA) followed by fertilized eggs (1.59 × 102 ± 3.69 × 101 ng genomic DNA), and larvae (nauplius and zoea). The histology of gravid females with high WSSV copies showed pyknotic and karyorrhectic germinal vesicle with degenerated cortical rods. Conversely, the gravid females with low WSSV copies showed fully developed ovary without characteristic signs of WSSV infection. Transmission electron microscopic studies clearly established the presence of WSSV particles in both ovaries and spermatophores. When subjected to in situ hybridization, WSSV-specific signals were observed in connective tissues of spermatophore, although gravid ovary and fertilized eggs were failed to produce WSSV specific signals. The present study provides the first molecular and histological evidence for trans-ovarian vertical transmission of WSSV. Development of disease-free base population being the cornerstone and first step in establishing the breeding program, the present findings could be a basis for development of such programs.
Read full abstract