The aim of the study was to capture images that form on the human retina after the simulated implantation of an intraocular lens (IOL). White light was used rather than the commonly used near-infrared light, which is unsuitable for the examination of diffractive IOLs. For this purpose, a special optical setup was developed to investigate the influence of the IOL design on two-dimensional retinal images in vivo. A double-pass ophthalmoscopic setup with a scientific CCD camera system was developed. Imaging the retinal image of a white LED located at infinity provides access to the double-pass point spread function of the natural eye. Subsequently, a see-through device for simulated IOL implantation (VirtIOL, 10Lens S. L. U., Terrassa, Spain) was integrated to investigate the influence of the IOL design on the retinal image quality of complex scenarios. Retinal images were acquired from an incoherent white point light source. Combined with simulated IOL implantation, retinal images were acquired from the point light source, letters, and a United States Airforce target on a 6-m distant monitor. As expected, the double-pass images obtained with a monofocal IOL were sharper than those obtained with a multifocal IOL. The method opens up access to double-pass point spread function for white light, thus solving the problem of infrared light-based methods providing incorrect results when examining diffractive IOLs. This approach may be helpful for the investigation of perception in the future.
Read full abstract