White-light scanning interferometry is increasingly used for precision profile metrology of engineering surfaces, but its current applications are limited primarily to opaque surfaces with relatively simple optical reflection behavior. A new attempt is made to extend the interferometric method to the thickness-profile measurement of transparent thin-film layers. An extensive frequency-domain analysis of multiple reflection is performed to allow both the top and the bottom interfaces of a thin-film layer to be measured independently at the same time by the nonlinear least-squares technique. This rigorous approach provides not only point-by-point thickness probing but also complete volumetric film profiles digitized in three dimensions.