Radiation detection plays an important role in diverse applications, including medical imaging, security, and display technologies. Scintillators, materials that emit light upon exposure to radiation, have garnered significant attention due to their exceptional sensitivity. Previous research explored polymer dots (P-dots) doped with iridium complexes as nano-sized scintillators for radiation detection, but these were constrained to emitting specific colors like red, green, and blue, limiting their utility. Recently, there has been a breakthrough in the development of white light emitters stimulated by UV–visible light. These emitters exhibit a broad spectral range in the visible wavelength, enhancing contrast and simplifying detection by visible-light sensors. Consequently, the quest for white color scintillators in radiation detection has emerged as a promising avenue for enhancing scintillation efficiency. In this study, we present a novel approach by applying P-dots doped with two iridium complexes to create white light-emitting nano-sized scintillators. These scintillators offer a wider spectral coverage within the visible-light wavelength range. Under UV light (365 nm) excitation, our synthesized P-dots exhibited remarkable white light emission. Moreover, when excited by electron beam irradiation, we observed the clear emission close to white emission which is valuable for improving the detection of radiation.
Read full abstract