To be in a conformation that binds steroid, the hormone-binding domain of the glucocorticoid receptor (GR) must be bound to the 90 kDa heat shock protein (hsp90). Rabbit reticulocyte lysate contains a protein chaperone system that assembles the receptor into a heterocomplex with hsp90 and converts it from a non-steroid-binding to a steroid-binding form. Assembly of the GR-hsp90 heterocomplex requires hsp70, and in this work we examine the activities of four members of the hsp70 protein family in GR-hsp90 heterocomplex assembly. Rabbit reticulocyte lysate was depleted of hsp70 by passing it through a column of ATP agarose, resulting in the inactivation of its GR-hsp90 heterocomplex assembly activity. Addition of purified animal (mouse) or plant (wheat germ) hsp70 to the hsp70-depleted lysate permits assembly of a GR-hsp90 heterocomplex with a high affinity steroid binding site. However, purified hsp70 homologues from bacteria (DnaK) or the endoplasmic reticulum (BiP) do not promote heterocomplex formation, despite the fact that both DnaK and BiP bind to the GR in the assay system. When added to whole (i.e. hsp70-containing) reticulocyte lysate, DnaK and BiP inhibit GR-hsp90 heterocomplex assembly. Wheat germ lysate forms a heterocomplex between mouse GR and plant hsp90, but the addition of purified rabbit hsp70 to the wheat germ lysate does not increase the amount of receptor-wheat hsp90 complex produced, despite the fact that the rabbit hsp70 binds to the GR when it is added to the wheat chaperone system. The conclusion is that binding of hsp70 to receptors does not necessarily reflect a physiologically meaningful interaction. When native receptor heterocomplexes isolated from cytosols contain hsp70, it is likely that the hsp70-bound receptors represent a minority of receptors that have not yet proceeded fully through the receptor heterocomplex assembly process, which includes the dissociation of hsp70 after the binding of hsp90.