Adsorption of DNA fluorescent probes on GO-Fe3O4 is a promising strategy for establishing fluorescent bioassays, often using magnetic separation or fluorescence quenching to generate signals. However, there is a lack of systematic understanding of ssDNA-regulated changes in the enzyme-mimetic activity of GO-Fe3O4, and the accuracy of the results of single-mode fluorescence analysis is susceptible to environmental interference. These limit the rational design and scope of application of the methods. Herein, the force and the catalytic mechanism of ssDNA/GO-Fe3O4 interactions were explored in detail. On this basis, a ratiometric fluorescence/colorimetric dual-modal analysis platform was constructed based on the superparamagnetism and DNA controllable peroxidase-like activity of GO-Fe3O4. The ratiometric fluorescent signal was generated by combining 7-amino-4-methyl-3-coumarinylacetic acid (AMCA) labeled aptamer (AMCA-aptamer) with AT hairpin-synthesized copper nanoparticles, which has built-in correction and resistance to environmental interference. The aptamer-modulated peroxidase-like activity of GO-Fe3O4 generated the colorimetric signal. Two signals correct each other to further enhance the reliability of the results. The analytical platform performed satisfactorily for AFB1 detection in the range of 0.1–150 μg/L, and was successfully applied to real samples (peanut, milk powder, and wheat flour). With the support of ImageJ software, quantitative detection was achieved by RGB channel analysis for real-color images, which provides a potential pathway for the rapid detection of food safety.