Biofabrication is a popular technique to produce personalized constructs for tissue engineering. In this study we combined laponite (Lap), gellan gum (GG) with platelet-rich plasma (PRP) aiming to enhance the endothelial regeneration through the synergistic effects of their individual properties. Laponite has the ability to form porous three-dimensional networks mimicking the extracellular matrix structure, and PRP delivery of growth factors stimulates the endothelial cell proliferation and migration, offering a composite bioink for cell growth and support. The sustained release of these growth factors from the GG-laponite-PRP composite material over time provides a continuous source of stimulation for the cells, leading to more effective tissue engineering strategies for endothelial tissue regeneration. Four blend compositions comprising 1% w/v GG and 0.5 or 1% w/v Lap and 25% v/v PRP were combined with Wharton jelly mesenchymal stem cells (WJ-MSCs) and bioprinted into vessel-like structures with an inner diameter of 3 mm and a wall thickness of 1 mm. Stress/strain analysis revealed the elastomeric properties of the hydrogels with Young modulus values of 10 MPa. Increasing the Lap concentration led to a non-significant decrease of swelling ratio from 93 to 91%. Live/dead assay revealed cell viability of at least 76%, with the 0.5%Lap-GG viability exceeding 99% on day 21. Gradual increase of glycosaminoglycans accumulation and collagen production indicate promotion of ECM formation. The expression and membranous localization of PECAM-1 from day 7 and the granular intracellular localization of vWF after 2 weeks demonstrate in vitro endothelial functionality. In vivo subcutaneous implantation indicated the absence of any adverse immunological reactions. The results reveal the expression of both vWF and PECAM-1 by WJ-MSCs entrapped in all four construct compositions with significantly higher expression of vWF in the presence of PRP.
Read full abstract