The Kashmir region in the western Himalayas is located in a transition zone between areas dominated by the South Asian Summer Monsoon (SASM) and the North Atlantic Oscillation (NAO). Currently being primarily influenced by westerly disturbances (WDs), the area is important to decipher teleconnections between these two important circulation systems for the assessment of past climate variability. We evaluated climate-growth relationships of Abies pindrow (Royle ex D. Don) and reconstructed April to June (AMJ) self-calibrated Palmer drought severity index (scPDSI) for the south Kashmir region during the period 1643–2016 CE. Our reconstructed scPDSI revealed a long wet phase during 1650–1816 CE, indicating the impact of the Little Ice Age (LIA) over the region, followed by prominent drier post-LIA episodes. The mid 18th century (1730–1760 CE) was the wettest period in the past four centuries, whereas the period 1817 to 1865 CE marked the driest phase. These phases are consistent with other precipitation reconstructions from the WD-dominated western and Trans-Himalayan regions, but inconsistant with summer precipitation reconstructions from the SASM-dominated Himalayan regions. A significant positive correlation between our scPDSI reconstruction and the North Atlantic Oscillation (NAO) for the wet phase of the LIA suggests that the NAO remained dominant in modulating the winter and spring precipitation at the study region. During the 19th and 20th centuries, scPDSI was either weakly or negatively correlated with the NAO index, indicating the influence of other atmospheric circulation systems in driving the spring/summer precipitation in the study area. This study, augmented with other moisture records, contributes to analyze the temporal and spatial extent of moisture variability in a regional perspective.
Read full abstract