The effect of oxygen and water vapor partial pressure on the total conductivity of the proton-conducting BaCe0.7Zr0.1Y0.2O3–δ material is investigated in the present work. Single-phase and dense ceramic materials have been successfully obtained using the citrate–nitrate synthesis method. The contributions of partial conductivities (hole, oxygen-ionic, protonic) are evaluated based on electrical and emf measurements. At 900 °C in air atmosphere, ionic and hole conductivities almost equivalently contribute to the total conductivity, while in reducing temperatures, the transport of the studied material becomes ionic; the predominant protonic transport (t H ≈ 1) realizes under wet hydrogen atmospheres at temperatures below 700 °C. Based on the measurements of total conductivity as a function of water vapor partial pressure, it is found that the increase of conductivity in reducing atmospheres is associated with the growth of proton conductivity. A non-monotonic change of total conductivity in oxidizing atmospheres is caused by the competing effects, namely decreasing the hole conductivity and increasing the protonic one.
Read full abstract