AbstractGlacier changes on the Tibetan Plateau (TP) have been spatially heterogeneous in recent decades. The understanding of glacier mass changes in western Tibet, a transitional area between the monsoon-dominated region and the westerlies-dominated region, is still incomplete. For this study, we used an energy-mass balance model to reconstruct annual mass balances from October 1967 to September 2019 to explore the effects of local climate and large-scale atmospheric circulation on glacier mass changes in western Tibet. The results showed Xiao Anglong Glacier is close to a balanced condition, with an average value of -53±185 mm w.e. a-1 for 1968-2019. The interannual mass balance variability during 1968-2019 was primary driven by ablation-season precipitation, which determined changes in the snow accumulation and strongly influenced melt processes. The interannual mass balance variability during 1968-2019 was less affected by ablation-season air temperature, which only weakly affected snowfall and melt energy. Further analysis suggests that the southward (or northward) shift of the westerlies caused low (or high) ablation-season precipitation, and therefore low (or high) annual mass balance for glaciers in western Tibet. In addition, the average mass balance for Xiao Anglong Glacier was 83±185, -210±185, and -10±185 mm w.e. a-1 for 1968-1990, 1991-2012, and 2013-2019, respectively. These mass changes were associated with the variations in precipitation and air temperature during the ablation season on interdecadal time scales.
Read full abstract