This study investigated the source, trajectory, and precipitation of the Southwest (SW) vortex, which was linked with the Plateau (P) vortex. Based on the statistical study of a number of cases, this study showed the following results. The SW vortex tended to originate at the northeastern and western peripheries of the Sichuan Basin, normally coinciding with the presence of the P vortices in the eastern region of the Tibetan Plateau. Most of the aforementioned vortices exhibited a longer life span, and resulted in severe storms averaging approximately 50 mm of rainfall per day, especially in the cases of more than 100 mm of rainfall per day in eastern and southern China. Furthermore, new findings were obtained: (1) The SW vortex and the P vortex were attributed from an ‘Ω’ circulation pattern from blocking high in middle to high latitudes region. The SW vortex was notably influenced by the convergence of two air currents. In the lower troposphere, the southwesterly jet of the South Asian monsoon flowed over and around the Yungui Plateau, and cold–dry air from the north flowed into the Basin. (2) Both the SW vortex and the P vortex displayed a shallow synoptic system characterized below 500 hPa, and wet–cold cores formed around the sources at low altitudes. (3) The analysis on atmospheric instability and dynamics suggested that the vortices’ eddies generated significant convective instability at lower levels. The circulation pattern and instability conditions facilitated the heavy precipitation associated with the SW vortex, and the ample water vapor and subsequent latent heat intensified the precipitation.
Read full abstract