AbstractThe Western Equatorial Pacific (WEP) warm pool, with surface temperatures >28 °C and a deep thermocline, is an important source of latent and sensible heat for the global climate system. Because the tropics are not sensitive to ice‐albedo feedbacks, the WEP's response to radiative forcing can be used to constrain a minimum estimate of Earth system sensitivity. Climate modeling of pCO2‐radiative warming projections shows little change in WEP variability; here we use temperature distributions of individual surface and subsurface dwelling fossil foraminifera to evaluate past variability and possible radiative and dynamic climate forcing over the Plio‐Pleistocene. We investigate WEP warm pool variability within paired glacial‐interglacial (G‐IG) intervals for four times: the Holocene‐Last Glacial Maximum, ~2, ~3, and ~4 Ma. Our results show that these surface and subsurface temperature distributions are similar for all G‐IG pairs, indicating no change in variability, even as pCO2‐radiative forcing and other boundary conditions changed on G‐IG timescales. Plio‐Pleistocene sea surface temperature (SST) distributions are similar to those from the Holocene, indicating WEP SSTs respond to pCO2‐radiative forcing and associated feedbacks. In contrast, Plio‐Pleistocene subsurface temperature distributions suggest subsurface temperatures respond to changes in thermocline temperature and depth. We estimate tropical temperature sensitivity for the mid‐Pliocene (~3 Ma) using our individual foraminifera SST data set and a previously published high‐resolution boron isotope‐based pCO2 reconstruction. We find tropical temperature sensitivity was equal to, or less than, that of the Late Pleistocene.
Read full abstract